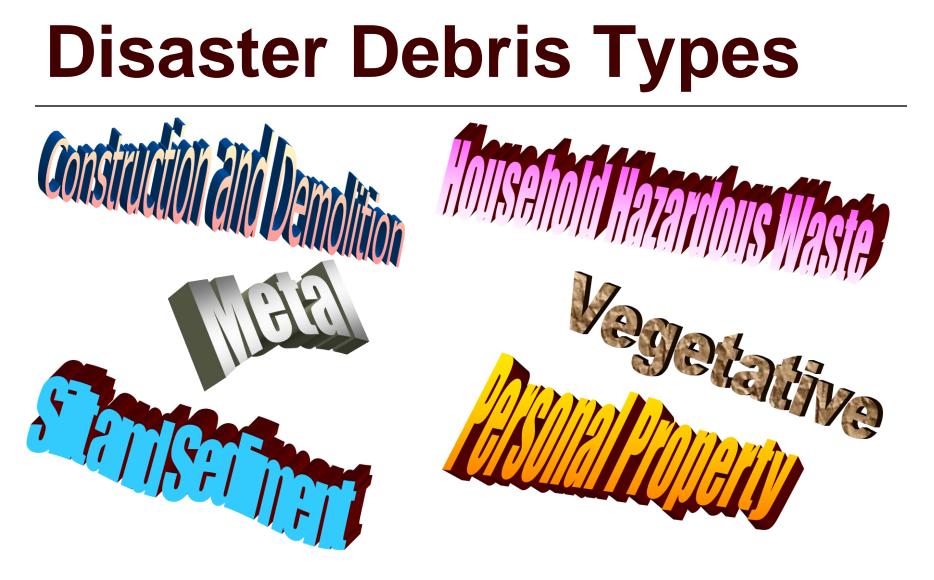
Welcome Kansas Emergency ManagementAssociation

The Old Clemet's Stone Arch Bridge in Chase County

Introduction to Debris Management 101



Components of a Debris Management Plan

- Established debris management structure
- Good assessment of the situation and assumptions
- Well-defined debris collection plan
- Identification of debris management sites
- Procedures for contracted services
- Process for demolition and debris removal from private property
- Process for disseminating information
- □ Safety

Common Disaster Types

Vegetation

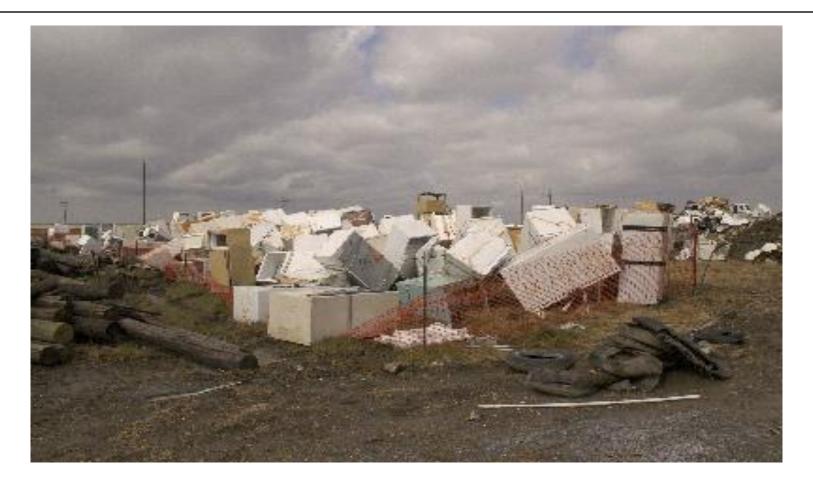
Soil/Mud

Sandbags

Construction and Demolition

Personal Property Structures

Personal Property Mobile Homes


Personal Property Household Hazardous Waste

Metals

White Goods

Mixed Debris

Vehicles

Animal Carcass

Critical Debris Issues

- Estimated quantities and types of debris
- How it will be:
 - Collected
 - Stored
 - Reduced
 - Disposed

Critical Debris Issues

- Identification of responsible agencies
- Capabilities of in-house resources
- Identification of work to be contracted
- Identification of applicable environmental and historic laws
- Requirements for FEMA funding

Debris Quantity Forecasting and Estimating

Forecasting vs. Estimating

Debris Forecasting

Pre-disaster plan development

Debris Estimating

Post-disaster plan implementation

Debris Forecasting Techniques

- Historical Analysis
- □ Community-based risk analysis
- Computer-based prediction analysis

Forecasting

Community-Based Risk Analysis

- □ Use maps to indicate areas of similar land use
 - Urban, industrial, rural, mixed
- Develop a representative sample of debris quantities of each area
- Project debris quantity estimate for each area

Forecasting

Computer-Based Prediction Analysis

- □ Types of models
 - USACE
 - Private industry

Debris Forecasting USACE Model – Manual

- □ Formula: Q = C(H)(V)(B)(S)
 - Q = Volume of debris in cubic yards
 - C = Storm category factor
 - H = Number of households
 - V = Vegetative characteristic
 - B = Commercial/business/industrial use multiplier
 - S = Precipitation multiplier

Debris Estimating Techniques

- □ Ground measurement
- Aerial photography
- □ GIS
- □ Combination of techniques

Estimating Roadside Debris Piles

Mixed Debris

C&D Debris

Debris Estimating Formulas

- □ One-story building: $\underline{L' \times W' \times H'} = \underline{CY \times .33} = \underline{CY}$ 27
 - □ Mobile homes: $\underline{L' \times W' \times H'} = CY$ 27

Debris piles: $\underline{L' \times W' \times H'} = \underline{CY}$ 27

Debris Estimating Table

Vegetative Cover Multiplier (Yard Waste)

<u>Typical House</u>	<u>None</u>	<u>Light (1.1)</u>	<u>Medium (1.3)</u>	<u>Heavy (1.5)</u>
1000 SF.	200 су	220 cy	260 cy	300 cy
1200 SF.	240 cy	264 cy	312 cy	360 cy
1400 SF.	280 cy	308 cy	364 cy	420 cy
1600 SF.	320 cy	352 cy	416 cy	480 cy
1800 SF	360 cy	396 cy	468 cy	540 cy
2000 SF	400 cy	440 cy	520 cy	600 cy
2200 SF	440 cy	484 cy	572 cy	660 cy
2400 SF	480 cy	528 cy	624 cy	720 cy
2600 SF	520 cy	572 cy	676 cy	780 cy

Formula for one story structure: square feet x 8 feet x .20 x VCM = cy 27 This chart and calculations are inclusive of the structure and contents

Debris Forecasting USACE Flood Debris Model

- Used to calculate debris quantity from a flood event only when the structure is not destroyed.
- □ Formula: Square footage x .02 = cubic yards of debris
- \square 2400 sq. ft. x .02 = 48 cubic yards

Mobile Home Park Debris Estimating

Typical single wide = 290 cubic yards


Typical double wide = 415 cubic yards

Approximate Conversions

- **Construction and Demolition (C&D)**
- □ CY of C&D debris to tons-divide by 2
- □ Tons of C&D to CY–multiply by 2
- **Woody Debris**
- □ CY of hardwoods to tons–divide by 4
- □ Tons of hardwoods to CY–multiply by 4
- □ Tons of softwoods to CY–multiply by 6

Estimating Using Aerial Photography

Tornado Damage

Debris Management Site

Improper Site Layout

Tools for Assessing Eligibility

- Depuise Assistance Guide FEMA 325
- Public Assistance Policy Digest
- Debris Management Guide
- **FEMA** Policies and Appeals
- Debris Eligibility Reference Table

Debris Removal Eligibility

Curbside Debris Pickup

- Be disaster-related debris
- □ Be separated from garbage

Be kept in distinct piles

- Monitor pickup activities
- □ Keep public informed

Reasonable Cost

FEMA definition:

□ A cost that is both fair and equitable for the type of work being performed (OMB A-87)

Eligible Costs

- □ Force Account Labor
- □ Equipment
- □ Materials & Supplies
- Mutual Aid
- Contracted Services
- Project Management
- □ Monitoring
- Volunteers (Offset Federal Cost Share)

Debris Operations Prioritizing Activities

Initial Response–Debris Clearance

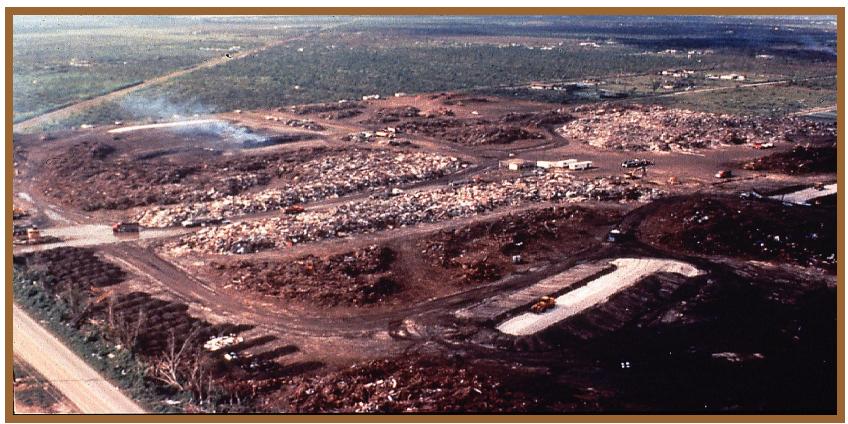
Clearance of debris that hinders immediate lifesaving actions and poses an immediate threat to public health and safety

Recovery–Debris Removal

Removing and disposing of debris that hinders the orderly recovery of the community and poses less immediate threats to health and safety

Debris Operations Operational Considerations

- □ Separate debris by type
- Segregate recyclable materials
- Segregate household hazardous waste
- □ Place debris on right-of-way
- Keep fire hydrants and valves cleared of debris piles
- Report locations of illegal dumping


Evaluation Criteria – Size

- □ Dependent on:
 - Expected volume of debris to be collected
 - Planned volume reduction methods
 - Volume recycling rate
- □ Anticipate between 50-200 acres

Evaluation Criteria – Baseline Data Checklist

- Environmental Baseline Study
 - Document existing conditions
 - Assess potential impacts of use
 - Establish a monitoring program and closure criteria
 - Coordinate with appropriate State and local agencies

Debris Management Site

Proper Site Layout

Debris Removal Operations

Debris Management Site

Improper Site Operation

Environmental Monitoring

- □ Groundwater
- □ Surface Water
- □ Air Quality
- □ Ash
- □ Soil

Debris Management Site Volume Reduction

Primary methods:

- □ Burning
- Chipping and Grinding

Grinding and Chipping Equipment

Volume Reduction – Vegetative Grinding and Chipping

- □ Reduces volume by a ratio of 4 to 1
- Preferred method for reduction of vegetative debris
- □ Allows better ease of site management

Developing the Plan

"Planning is worthless; however the planning process is priceless."

General Dwight D. Eisenhower June 4, 1944